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1. INTRODUCTION 

This report consists of a technical explanation of the code 
used to calculate the steady supersonic, three-dimensional, 
inviscid flow over blunt bodies. Because this code has been 
extensively documented elsewhere (e.g., refs. 1 and 2), a cer- 
tain measure of brevity is possible: further details are available 
in these references. 

In the following section (section 2), a brief discussion 
of the theoretical and numerical formulation of the problem is 
given, including exposition of the boundary and initial conditions 
used. In section 3, the overall flow logic of the computer pro- 
gram is given, in section 4, the program usage and operation are 
described, and in section 5, the program accuracy and limitations 
are discussed. 

2. THEORETICAL AND NUMERICAL FORMULATION OF THE PROBLEM 

2.1 Review of the Governing Equations 

The fluid dynamic equations in conservation-law form govern- 
ing steady, inviscid, three-dimensional, compressible flow of a 
nonheat-conducting gas can be written in cylindrical coordinates 
as follows: 

ac/az + a”ar + aE/a+ + i-i = 0 - - (1) 



where 4, 1, <, and i are four-component vectors defined as 
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Here p and P represent dimensional pressure and density and u, v, 

and w denote velocity components in the coordinate directions z, r, 

and $. The nonlinear system (1) of four equations represents 

conservation of mass and mcmentun. 

The governing set of equations is made complete by the addition of 

energy conservation as given by the equation for total enthalpy 

Ht = h(p,p) + q2/2 = const (2) 

where q is the magnitude of the velocity vector and h(p,p) is the 

state equation for static enthalpy. The specific formulation for 

h depends, in particular, on whether the gas is assumed to be 

perfect or everywhere in local thermodynamic equilibrium. Explicit 

representations for h are described later. 

The vehicle geometry and the location of the outer or peripheral 

shock surface are represented by functions of the form 

‘b = r,(z,Q), rs = rs(z,b) (3) 



The function rb is specified (sec. 2.4) and rs is determined during 
the course of the numerical computation. As is common practice in 
problems of this type, the distance between the body and peripheral 
shock is normalized by a transformation of the radial variable r. 
This yields a rectangular computational plane whose boundaries 
consist of the plane of symmetry and the body and shock surfaces 
as shown in the sketch below. 

iJ Plane of Symetry 

Periphe 
Shock 
(E=l) 

i2 3 
$,A=00 

I 
z = constant 

Discretized Flow Fleqion 

,- Shock 

12 j N.7 
,I 

t 
Plane of f 

Symmetry Fringe 
Points 

Computational Plane 

Mesh Description 

Since the flow variables can vary rapidly in the cross flow plane, 
an independent variable transformation is performed in the $ direc- 
tion to cluster points in that region of suspected large gradients. 
The transformation, which is also given below, was introduced by 
Woods (ref. 3) and has been successfully applied by Schiff (ref. 4). 

The equations of the independent variable transformations are 

z = 2, c(z,r,@) = (r - rb)/tr - y,) I 77 (9) = tan 
S 

-'(ktan 9) (4) 

where K is a free parameter with the range 0 L K s 1. The points 
are clustered about the wing tip region (90° plane) for small values 
of K and the spacing approaches uniformity as K approaches unity. 
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The change of variable procedure outlined above is applied to each 

vector of Eq. (1) ; and the resulting terms are then rearrange’d in 

conservation-law form to yield the following equation: 

where 

rj=; - - 
F-= (-[r 

bZ 
+ S(r S - rb 1 I- + i - [rb + 5 (rs - rb ) ]G 

Z z 4 @ Q 

5 = (K”COS’q + sin*n)“/K 
3 3 

arya2 + agag + as/an + g = 0 (5) 

l/(rS - rb) 

HE%+ [(rS -rb )tj+ (rs -rb )G1/(rs-rb) 
Z Z 4 a 

- (1 - K*) sin (217 )5/K 

The finite-difference analogue of Eq. (5) is integrated with 

respect to the hyperbolic coordinate z ‘to yield values of the con- 

servative variable U. - Subsequent to each integraticn step, the 

physical flow variables p, or u, v, and w must be decoded from the 

components u i of u. This necessitates the solution of five simul- - 
taneous nonlinear equations consisting of Eq. (2) together with the 

four elements ui. The velocity components v and w are easily found 

and are given by 

v = U3/U1’ w = u4/u1 (6) 

If the u i along with Eqs. (5) are used to eliminate the explicit 

dependence of p, e, v, and w from Eq. (2)) one obtains the following 

implicit expression for the velocity, u: 



E(u) = u*/* + h[p(u) ,p(u)l - r/2 = o (7) 

where 

P(U) = u - 2 u u, 1 P (u) = Ul/U’ and r = 2Ht -[u: + +/u; (8) 

The decoding procedure is now reduced to a problem of root 

finding, i.e., the z-velocity component u that satisfies Eq. (7). 

Two roots exist; one corresponds to subsonic flow and is discarded 

since in the results presented u is always supersonic, and the other 

corresponds to supersonic flow and gives the desired solution. The 

procedure for solving Eq. (7) depends on whether a perfect or real 

gas is being considered and consequently on the function h(p,c). 

For a perfect gas h(p,e) is simply related to pressure and density 

and when combined with Eqs. (7 and E) yields a quadratic equation 

that can be solved to find an analytical representation (ref. 5) 

for the supersonic velocity u. 

For a real gas no such simple explicit functional relationship 

exists. The conventional procedure (t-efs. 6 and 7) for evaluating 

real gas state relations is to use a combination table lookup and 

curve-fitting procedure. Such a scheme is adopted here. A 

particularly rapid Fortran-language computer code called RCAS is 

available that returns values of static enthalpy h, speed of sound, 

temperature, and entropy, with either pressure and density or 

pressure and entropy as independent variables. 

To find the roots of Eq. (7) for a real gas, a root finding 

algorithm is employed. The “successive linear interpolation” scheme 

described by Dekker (ref. 8) was found to be particularly efficient. 

Slightly more than seven iterations are required, on the average, 

to find the desired supersonic root for a given U (three iterations 

is the happenstance absolute minimum). 
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Three-dimensional numerical integration methods (see, e.g., 

refs. 6, 7, and 9) which employ physical rather than conservative 

dependent variables are generally able to include state relations in 

a more direct manner since a decoding procedure is not necessary. 

Only half again more computational time than a perfect-gas calcula- 

tion is required for those codes compared to a factor of about four 

when conservative variables are employed. However, the ability to 

capture shocks by use of conservative variables is worth the addi- 

tional cost. 

2.2 Boundary Conditions 

In this section the boundary condition schemes applied at the body 

and shock surfaces are discussed briefly. At the body the surface 

tangency condition 

3 l ;b = ’ (9) 

is imposed where q is the velocity vector - 

CT = ui + vi + wi z -2 -r -(a 

and n -b is the outward unit normal to the body. The second-order 

predictor-corrector scheme, MacCormick’s predictor and Eq. (15) 

below, is first applied at the body to yield the conservative 

variables. These variables are then decoded [see discussion 

following Eq. 
-n+l -n+l -n+l -n+l -n+l 

(6) J to obtain pllj, Fl,j’ ul,j / vl,j I and “1,j atz 
n+l 

* 
In general the resulting velocity vector 3’; based on the predicted 

I 
velocity components will not satisfy the surface tangency condition 

Eq. (9) and, in fact, will be rotated out of the surface tangent 

plane by a small angle AO. In applying Abbett’s method (ref. 10) 

this angle can be determined from the following equation: 

-1 I-n+1 n+l 
A0 = sin 

- 
tgl-,j 

1 
l “b/91, j, 

(10) 
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-n+l 
where ‘Lj 

-n+l is defined to be the magnitude of q 
-l,j 

and the outward 

unit normal n 
-b 

to the body can be calculated from (see ref. 5) 

-rbziz + ir - /r,)i+ 

rz + 1 + (rb$/rb) 
2 1/2 

z 1 (111 

The function f 
b 

= r 
b - rb(z,Q) = 0 describes the body surface 

[Eq. (311. Once A$ is determined the velocity vector is rotated 

back into the surface tangent plane by imposing a simple compression 

or expansion wave. 

If A@ iS positive, then an expansion is necessary for the rotation 
-n+l 

of 9 -1,j 
and if Ae is negative a compression wave is required. The 

corrected value of the static pressure is found from the integral 

relation (ref. 12) for the Prandtl-Meyer turning angle v(p;I-!t,s) 

which depends on pressure and has the total enthalpy and entropy 

as parameters. The corrected value of pressure is found by solving 

n+l U(P1, j' Ht’ s) 
-n+l = v(p,,j; Ht’s) + *O (1.2) 

n+l for the pressure pllj. In this equation A@ is given by Eq. (10). 

If A3 is sufficiently small, Eq. (12) can be inverted and solved 

analytically for n+l 
Fl,j 

only in the case of a perfect gas (ref. 5). 

For a real gas, Eq. (12) can be inverted by the use of a table- 

lookup method. The isentropic flow assumption underlying P.bbett’s 

boundary condition procedure requires that the table be generated 

only once at the very beginning of a flow field calculation when the 

entropy on the body stream surface is known. The table elements are 

pressure and Prandtl-Meyer turning angle v. The procedure for 

generating the table is described by Hayes and Probstein (ref. 12). 
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n+l The pr;s;ure ~1,~ appearing in Eq. (12) is determined by first 

Fk;;ing V(Pl,j; Ht, s) from the table with the predicted pressure 

plrj 
as the argument. The angle A0 given by Eq. (10) is then added 

to the result and the desired value for the corrected pressure p n+l 

-n+l l,j 
is then found from the same table with v(pl,j; Ht, S) + Af3 as the 

argument. The remaining flow variables pn+l, u"+l, v n+l 
1,~ 1,l I-,j' 

and w;'; 

are then obtained in the same fashion as described in reference ;. 

The outer boundary of the computational plane is the peripheral 

shock wave which completely encompasses the disturbed flow region. 

In this report a procedure is used whereby the peripheral shock 

wave (i.e., the shock for which freestream conditions are maintained 

on the upstream side) is treated as a discontinuity. The Rankine- 

Hugoniot relations are satisfied exactly across this discontinuity. 

There are many ways of incorporating a sharp-shock calculation in a 

numerical algorithm, including method of characteristics and simpler 

methods such as those of Kentzer (ref. ll), Earnwell (ref. 13), 

and Thomas, et al. (ref. 14). Thomas' scheme is used here since it 

is relatively simple to implement and, furthermore, comparisons -with 

other methods, including a full method of characteristics, have 

shown it to yield sufficiently accurate results for our purpose. 

The pressure downstream of the shock wave is the basic variable on 

which all other shock-wave variables depend. Its estimated vslue 
(1) 

FN 5, j' 
2 < j <N 

[Eq. (XaTbel=ow;. 

at (n + l)Az, is first found by the predictor step 

Since all other variables associated with the shock 

wave can be expressed as functions of pressure through the Rankine- 

Hugoniot equations, their values can then be found. The pressure 

&;Tj is then recomputed by the corrector, (Eq. (16b) below), and the 

dependent flow variables are adjusted accordingly. 

The boundary conditions at the planes of symmetry are applied in 

the conventional manner whereby the fringe points (see previous sketchj 



are filled with data reflected across the planes of symmetry, e.g., 

Pm 1,l = P i,3’ 
w =-w 

i,l i,3’ 
etc. 

2.3 Initial Conditions 

It is necessary to have an axis-normal starting plane to begin 

the calculation. All variables, the shock location and the shock 

slo.pes must be specified on this plane. ,There are two ways of 

obtaining this starting solution. The first is using the pointed- 

cone starting solution procedure which is contained internally within 

this code. The second is for blunt bodies; here, the starting-plane 

solution is obtained from a separate computer code such as Barnwell 

(ref. 13) or Moretti (ref. 15). 

2.4 Finite-Cifference Scheme 

Since only the peripheral shock is treated as a sharp dis- 

continuity and the others are “captured” by the difference 

algorithm, of prime importance is the selection of the finite- 

difference scheme to be used to advance the field points, i.e., the 

points for which 2 5 i $ N 
5 

- 1 and 2 5 j I N in the sketch above. 

It has been found (ref. 17) that MacCormack’snscheme (ref. Iti) I 
which is an accurate predictor-corrector scheme, is the most 

efficient second-order algorithm to use in a shock-capturing 

technique. 

The algorithm can be written as 

(13) 
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+ Un(l) 
-i,j 

- AZ 

nr7 I 
&l) 

t-i,j 
- p 

-i,j-1 1 
- AzH!? 1 

--lrlj 
where n 

U&j - = U(nAz,iA<,jAn) 

n 
Fi,j = F(Un .,nAz,iAg,jAn) 

- -113 
Fm 
-i,j 

(14) 

At the body (i = 1,2 & j & ?yTn) Abbett's (ref. 10) scheme is 

used to satisfy the surface tangency condition as is discussed 

above. It relies on information provided by the finite-difference 

scheme. The numerical algorithm clsed for the field points, however, 

cannot be used on the surface since it requires points on either 

side of the point being advanced and thus data at a set of points 

that would lie within the body. Consequently, a special second-order 

accurate algorithm was constructed which requires data only on or 

outside the body. This scheme uses the predictor step of YacCormack's 

method (ref. IC;), Eq. (13) followed by the corrector step given by 

Un+l 1 n 
-i,j 

=- u 
2 L -i,j 

+p) - E [z;;;,j - c;] - E [Gil; - G/l;J 
-i,j I I 

- AZ,(~) + E [z;+, j - 2E;+, j + Fn -i,j I I -1,j 

where i = 1. After MacCormack's predictor and Eq. (15) have 

been used to advance the data at the body, then Abhett's scheme 

is used as a final corrector. 
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At the shock wave, a predictor-corrector sequence is again 

used and requires data at the shock and one point below it. The 

algorithm is as follows: 

(1) n 
Ui,j = Jli,j 

(16a) 

n+l=L n 
%,j 2 [ ui,j 

+ u(l) - E [$; - _F;y j] - 
-i,j I - I 

AZ (1) 
G %.,j 

- p 
-i, j-1 ]-Azg#] 

(16b) 

where i = N 
5' 

Equations (16a) and (1Sb) are used in conjunction with 

the Rankine-Hugoniot relations as described above, to determine the 

peripheral shock slope. 

The integration stepsize is based on the analysis presented in 

reference 5, in which formulas for the projections of the slopes of 

the characteristics in the z-c and Z-G planes are given and, with a 

slight modification due to the clustering transformation of a, can be 

used to determine the maximum possible stepsize. 

3. OVERALL PRCGRAM FLGW LCGIC 

The overall logical flow of the program is described in this 

section. PRCCRAtM MAIN is the executive program for this computer 

code. It controls the mAin flop of the program logic end it starts 

by calling SUB.GEOM3 which reads the geometry description. Next 

SUB-INPUT is called from which the floK conditions and the operating 

controls are read. Program MAIN then calls SUB.INITA. This 

initializes the starting plane and defines various physical con- 

stants. To complete the initialization process SUE.BNERY(2) is 

called to fill in the data at the planes of reflection. This 
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completes the process of getting the code ready to march downstream 

from an axis normal initial data plane. 

SUB.EIGEN is called to calculate the initial marching stepsize 

based on the grid size and the values of the flow variables. The 

program then prints out the entire flow field and outer shock 

structure. This is done by calling SUB.OUTPUT. 

The marching process is done by looping from 1 to NITER and 

is controlled by calling two subroutines, EIGEN and DIFFR. The 

stepsize of the marching process is determined every ICCNST (49) 

iterations by calling SUB.EIGEN. Once the stepsize is determined 

SUB.DIFFR is called to perform MacCormack’s prediction-correction 

sequence. Within SUB.DIFFR flow field variables on the boundaries 

are calculated by SUB.BNDRY and SUE.SHCCK. 

After completing the iteration loop, SUB.OUTPUT is called to 

furnish a final solution. 

4. PROGRAM USAGE AND OPERATION 

The input data options for the code are described below in terms 

of the card number, its format, and the variables which are defined 

by that card. All geometry inside the program is expressed in terms 

of body-oriented coordinates, z (longitudinal), r (radial, normal to 

z) I and o (radial angle around the z-axis counterclockwise, starting 

at zero radians straight down), or functions and transforms thereof. 

The unit for z, r and all lengths input are arbitrary, a user’s 

choice, requiring only that they be consistent throughout each case. 

In the case of angular dimensions, it has been found more convenient 

to input them in degrees and let the program convert. and store them 

in radians. 
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Card 
No. Format 

1 815 NSEG 
KIND 

2 EF10.6 ZSEG 

3 8F10.6 RSEG 
4 8F10.6 DSEG 

5 8F10.6 ASEG $ se9 

5a 3F10.6 zc 

RC 

RADIUS 

7, - Station Initiating Seg- 
ment 

r - Coord. Initiating Segment 
Distance from Centerline 

to Flat Chord, Initiating 
Segment 

Angle Between Straight Down 
and DSEG Initiating Segment 

2 at Center of Longitudinal 
Arc 

r at Center of Longitudinal 
Arc 

Radius of Longitudinal Arc 

Card 1 (Format 815) specifies NSEG (=number of segment points) in 

its first field, and KIND flags in the next NSEG fields (up to 7 

Variables 

# of Segment Points 
Flag for Kind of Segment 
0 = Sphere or Circulr Ogive 
1 = Circular Cone 
2 = Circular Cone with Flat 

cut 

maximum). The segment points, whose dimensional specifications are 

punched on cards 2 through 5, bracket NSEG-1 segments. The last 

point usually initiates an infinite extension of the last bracketed 

segment. 

The KIND flags tell what kind of contour each segment point 

initiates, where 0 = Circular Arc with Circular Cross Section, 

1 = Straight Line with Circular Cross Section (Forecone, Cylinder, 

or Aftcone), and 2 = Cut Cone (Circular Cross Section Truncated 

by a Flat Cut). It should be noted that KIND = 0 is not restricted 

to sl;heres, but can also be used for circular arc ogives of circular 

cross-section. It has been used, for example, in rounding off 

contours approaching a planar axis-normal base. In such a case 

the KIND = 0 flag initiating the last segment is also the last 0 
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flag, to avoid calling an extra card later. A spher e-cone-arc 

would have NSEG = 4 and KIND = O,l,O,l. 

The next four cards contain data describing successive cross 

sections (up to 7) in successive fields of each card, using Format 

7FlO (with the punched decimal Faints governing the decimal point 

location in each field). With the body segmented into up to six 

physical contours of types KIND, each bounded by a pair of z-planes, 

the z-plane coordinates called ZSEG are specified on card 2. The 

radius of each cross-section, RSEG, is specified in corresponding 

card fields on card 3. If a Flanar surface is to truncate any 

circular cross section, the radial distance from the centerline 

to the midpoint of the chord formed is DSEG on card 4, for those 

fields where the planar surface is on the vehicle. 

The orientation of a planar surface cut is not limited to the case 

of !$ = 0. Card 5 provides specification of ASEG, the angle Q in 

degrees subtended by DSEG in each z-plane of applicability. To 

define a plane, ASEG should be constant. 

Card 5 contains circular-arc data, and is read only if a KIND = 0 

flag appears within the fields activated by NSEG on card 1. More 

than one longitudinal circular arc may be specified, and one card 

must be read for each KIND = 13 segment initiated on card 1. The 

three data items of card 5a are ZC (Longitudinal Location of 

Circular-Arc Center), RC (Radial Location o f Circular-Arc Center), 

and RADIUS (Longitudinal-Circular-Arc Radius). It is important 

that the data of cards 2 through 5a be accurate to at least 5 

significant figures in order that successive contours meet smoothly 

at points of tangency such as sphere-cone or cone-arc junctures. 

It should be noted that geometry specifications usually should 

encompass all regions of the configuration bracketed by the z value 

at the input plane and the final ZMAX specified on a later control 

14 



card. However, the last ZSEG specified may be less than ZMAX if the 

kind of contour beyond the last ZSEG continues as a qualitatively 

unchanged extension of the NSEG-1 contour bracketed by the last ZSEG. 

Cn the other hand, if the input plane z-station is on a cone downstream 

of a sphere-cone juncture or is exactly at such a juncture, the first 

geometric contour described may be the cone (if the user so desires) 

and not the sphere, and that cone may be described by use of its apex 

rather than by the sphere-cone juncture as the first ZSEG. Finally, 

if a configuration is so variegated as to consist of more than six 

different segments (such as sphere-cone-cylinder-flare-cone-cylinder- 

aftcone-arc), such a case can be run by punching out a restart plane 

near the end of the sixth segment and starting a new case with the 

sixth segment geometry respecified as the first of the aft-region 

series. 

Only eight basic cards are needed to input ordinary case data and 

controls. There are several options which also exist that either 

require additional cards or not as many cards. The ordinary cards 

and some options will be described following the glossary of the 

input cards. 

Card 
No. Format 

(Cards 6-12 are read in SUB.INPUT) 

6 3E15.6,5X,I5 XMACH 
ALPHA 
GAMMA 
NREAL 

7 3F10.5 

8 515 

PHIFD 

RK 

RJ 

NIT 

NIPHI 

NITER 

Variables 

Mach number 
angle of attack (degrees) 
ratio of specific heats 
0 for perfect gas, -1 for 

real gas (pointed cone 
starting solutions are 
generated internally for 
perfect gas option only) 

meridional angle about 
which points are clustered 

meridional clustering para- 
meter (0 for no clustering) 

radial clustering parameter 
(0 for no clustering) 

No. of points between body 
and shock (max = 20) 

No. of intervals in meri- 
dional direction (max = 36) 

NO . of integration steps 
desired (when ZEND is 
specified set NITER to 99999) 
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ICONST(49) Stepsize is computed every 
ICONST(49) iterations (5 is 

9 3F10.5 

10 515 DISK 1 

11 2F10.5,315 ZBS 

NCONE 

CONST(9) 
CONST(4) 
CONST(5) 

DISK 2 

TAPE 1 

TAPE 2 

NTDSOS 

ZFLD 

ITPRTB 

ITPRTF 

NCASE 

(The following card contains values 
tions or in shifting the origin of 

12 5F10.5,15 DIAM 

ALENGT 

ZREF 
ZCG 

ZSHIFT 

IFANDM 

C 
nominal) 

1 for pointed cone solutions, 
2 for all other geometries 
Courant No. (usually 0.9) 
Radial dissipation constant 
Meridional dissipation con- 

stant 
1 reads solution from tape, 

2 writes solution on tape, 
3 does nothing (logical 
unit 12) 

1 reads solution from tape, 
2 writes solution on tape, 
3 does nothing (logical 
unit 11) 

1 does nothing, 2 stores 
body shape and writes data 
on tape each Z station, 3 
writes data only (logical 
unit 9) 

1 does nothing, 2 reads 
starting solution from 
punched cards, 3 stores 
solution on punched cards 
when exiting (logical unit 
7). If TAPE2 = 1 and DISK 1 
and DISK 2 = 2 or 3 a pointed 
cone solution will be gen- 
erated for the perfect gas 
case only 

0 
increment in z for 

printing shock and ‘i 
body variables (ZBS 
> ZEND if not desired) 

increment in 2 for 
printing field vari- / 

Print 
Based on 

ables (ZFLD > ZEND if 
not desired) J 

Z Stations 

No. of iterations for 
printing shock and 
body variables 
(ITPRTB > NITEi? if not 1 

desired) 
No. of iterations for > 

?rint 
Based on 

1 Number of 
printing field vari- Iterations 
ables (ITPP.TF >NITER 
if not desired) J 

If > 0, new case follows 

used in force and moment calcula- 
the pointed cone starting solution.) 

length used in calculating refer- 
ence area: usually maximum 
diameter 

reference length used in calculat- 
ing moments 

moment reference center 
center of gravity location for 

static margin calculation 
the value of 2 which corresponds 

to the starting cone origin: if 
no shift set = 0 

0, force and moment calculation 
1, no force and moment caic,ulation 
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(If starting solution is to be read from punched cards (TAPE 2 = 2), 
the following three cards are read in main program. If solution is 
read from magnetic storage device, these are not required.) 

12a SE15.6 

12b 5E15.6 
12c 315,4E15.6 

X.+lACH, ALPHA, GA-, RK, PHIFD (defined above) 

RJ (defined above) 
NIT, NIPHI, NREAL, (defined above) 
PlINF free stream pressure, Real Gas 
RlINF free stream density, 
VIINF free stream velocity, 
GASCON gas constant (1716.0 

for air) I 

Option 
Only 
(Dimen- 
sional) 

[If NREAL = -1, gas tables are place here and will be read in SUB.RG+S 
(523 cards for equilibrium air)] 

(If TAPE 2 = 2 punch card starting solution is placed here. The first 
card is the 2 station of the starting plane and is followed by flow 
variables at each node.) 

Card 6 (FORMAT 3E15.6,5X,I5) contains the basic free-stream flow 

velocity, angle of attack, gamma, and the operating control for the 

type of gas being employed. For ideal gas cases, GPMYA (ratio of 

specific heats) is held constant throughout the flow field. The free- 

stream Mach number, XMACH, is also a key parameter in the calculation 

of dimensionless properties throughout the flow field. It should be 

noted that the angle of attack, ALPHA, is to be input in degrees. 

NREAL is the flag specifying the gas type, 0 for ideal gas and -1 

for equilibrium real gas. Pointed-cone starting solutions are gen- 

erated for the ideal gas case (NREAL=O) only. 

Cards 7 through 12 contain the operating controls of the 

program. Card 7 determines the meridional location and the amount 

of clustering both meridionally and radially. The default values 

are zero(O). Card 8 contains the grid size, NIT and NIPHI, the 

maximum number of iterations, NITER, the increment between stepsize 

determinations ICONST(49), and the body-surface boundary condition, 

NCONE. CONST(9) is a Courant-number factor governing the ratio of 

stepsize actually used to that allowable by stability criteria and 

it is found on Card 9. Also, the fourth-order smoothing parameters, 

CONST (4) , and CCMST(S) are defined on this card. If needed, these 

parameters are typicaly on the order of 0.1. Card lc! contains the 

parameters that are used for storing or reading a solution from a 
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peripheral device such as a tape or punched cards. Card 11 

determines the print controls for this program and NCASE which is 

set to a value greater than zero if cases are to be run in 

succession. Card 12 defines various force and moment parameters and 

the value of z which corresponds to the starting-cone origin. The 

default for ZSHIFT is 0.0. 

Cards 12a, b, and c are read only if a starting solution is read 

from punched cards (TAPE=2 on card 10); these are read in the main 

program. 

The gas tables for equilibrium air are read in SUR.RGAS if 

NREAL = -1 in this location, followed by a punched card starting 

solution if TAPE2=2. The first card is the z-station of the 

starting plane. 

Next are cards 13 and 14 which are used to change the preceding 

program control variables at a specified z station and to initialize 

the forces and moments. If no altering is desired, one card is 

required and the z-station should be set to a value which is greater 

than ZEND. Card 14 is necessary only if IFANDM = 0 and NCOME = 2 and 

precedes the first ZA.LTER card (Card 13). Any other ZALTER cards 

(Card 13) are placed after card 14. 

Card 
No. Format Variables 

(The following card(s) is used to change the program control 
variables at preselected longitudinal ('2) stations and is read in 
Program .MAIN. At least one card is required if no modifications 
are asked for. In this case ZALTER should then be > ZEND.) 

13 F10.5,12,13, ZALTER 
6F10.5,12,13 NITA 

NIPHEA 
RJA 
RKA 
PHFDA 

STP 

DISSl 
DISS2 
NSWCYl 

NSWCHS 

2 station where altering occurs 
new NIT 
new NIPHI 
new RJ 
new RX 
new PHFD 
0, stepsize determined automatically 

'0, value of desired constant step- 
size 

new CONST(4) 
new CONST(5) 

{ 
0, new MacCormack 
1, old MacCormack 
0, no entropy relaxation 
1, entropy relaxation 
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(The following card is used to initialize the force and moment calcu- 
lations, and is read in SUB.COMPUT. This card is needed only if 
IFANDM = 0. *If NCONE = 2 and IFANDM = 0 this card is read before the 
first card 13 otherwise it is read after all card 13's.) 

14 6F12.8 FTX 
FTY 
FTZ 

initial olane forces in the z, r, 
Q direction 

RMTX 
RMTY 

C 

initial plane moments in the z, r, 
RMTZ $ direction 

There are error messages which are printed to aid the user when 

problems occur. The messages, locations, and their explanations 

follow below. 

SLJB.BNDRY 

In this routine, there are three error checks which are denoted 

by ICHECK. If ICHECK = 1, the pressure is negative, ICHECK = 2 

the density is negative and if ICHECK = 3, the local Mach number 

squared minus 1 is less than zero [(ME - 1) < O)]. These errors are 

sometimes due to erroneous body shape. 

For each ICHECK 

out. One before the 

ERROR CHECK-NEGATIVE 

K= 2 = 

P= RHO = 

a sequence of two error messages are printed 

correction and one after. These are as follows: 

PRESSURE IN BNDRY 

u = TJ = w = ICHECK = 

MODIFICATION INSTITUTED 

P= RHO = u = v= hl = 

SUB.PMYTURN 

In this routine, if the Prandtl-Meyer turning angle is too 

great for the flow conditions, the variables are set to values which 

correspond to a final turning Mach number of 1CO. This usually 

occurs due to a rapid change of the body shape. 
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----BODY TURN STOPPED AT M2 = lOrj.O---- 

SUB.EIGEN 

There are three error messages in this routine. The first is for 

a negative sound speed which can occur for either a negative pressure 

or density value. The second and third messages usually occur in the 

eigenvalue calculations. These messages can occur due to the geometry 

of the vehicle or for a local axial Mach number less than one. 

ERROR CHECK -SPEED OF SOUND IN EIGEN. J = K= 

ERROR CHECK -SIGMA-BAR-l IN EIGEN. J = K= 

ERROR CHECK -SIGMA-BAR-2 IN EICEN. J = K= 

This concludes the explanation of the major error messages. 

5. PROGFAM ACCURACY AND LIMITATIONS 

In general, this program can be used for inviscid, supersonic/ 

hypersonic flow past bodies with a bisymmetry plane (no yaw) at 

angles of attack. Conservative estimates of applicable ranges of 

(Mach number and angle of attack are Mm 2 2 and a ( 25. 

Khen using the geometry subroutine that is included, one is 

restricted to non-winged bodies. This can easily be rectified by 

changing the geometry package (SUB.GEOM3). The necessary informa- 

tion for the computer code is the body radius as a function of axial 

(z) location and meridional (o) location. This is furnished to the 

computer code as the radius of the body (RE), the axial slope of the 

body radius (RB ) and the meridional slope of the body radius (RB ). 
Z P 
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Numerically, the accuracy is second-order in time and space but 

to determine the actual physical accuracy it is best to compare with 

experimental results. These comparisons then guide the user in his 

descision as to how many grid points are needed to satisfactorily 

resolve the flow field. Note that if the first radial mesh spacing 

is a fairly large proportion of the body radius, erroneous solutions 

can occur. 

The main limitations of the current version of the program are: 

1. The flow in axial direction must be supersonic (Ir > 1). 

2. Yaw is not allowed. 

3. The present geometry package does not allow solution of a 

body with wings. 

4. If the Mach number, Mm, is below 2 and at the same time the 

angle of attack is above 15O, erroneous answers can occur due 

to large radial spacings of the grid near the body. 

5. The body radius cannot be multivalued. 

6. The program treats inviscid flow only. 

The use of the program is illustrated in reference 18 by explain- 

ing the input and output for a number of test cases. 
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